
Indexing Kit
Q:    I need to customize the two methods source:aSource willWriteRecord:
(unsigned)record and source:aSource didReadRecord:(unsigned)record from the
IXRecordTranscription protocol to do a fast archiving of my custom data. However, I don't
understand why aSource doesn't respond to the IXRecordManager API. How can I work
around this problem?

A:    The source inside the IXRecordTranscription protocol methods can either be an
IXRecordManager or an IXDataRepository object. In the latter case, the record manager is
its delegate.    For example, in order to find the record manager, your code should look like
this:

- source:aSource willWriteRecord:(unsigned)record
{

/* Check whether aSource is an IXRecordManager */
if (![aSource isMemberOf:[IXRecordManager class]])

aSource = [aSource delegate];

/* aSource is now an IXRecordManager */
/* Process your custom data here */

 return self;

}

QA896

Valid for    3.0, 3.1, 3.2

Q:    When I archive and unarchive an IXStore object, I am able to write it    to a
typedstream, but reading it back in gives me a memory protection failure with
the following backtrace.

Program generated(1): Memory access exception on address 0xe
(protection failure).
0xa025f46 in -[IXStore read:] ()
(gdb) where
#0 0xa025f46 in -[IXStore read:] ()
#1 0x500c9be in InternalReadObject ()
#2 0x500f0f8 in NXReadObject ()

Why?

A:    The memory smasher occurs in InternalReadObject() (the archiving code) when that
method tries to send an awake message to the unarchived store, which has been freed.   

The store was freed because it didn't have transactions enabled and hence was in a
partially updated state.    To fix this problem, you can, for example, call
commitTransaction in the write: method of your store object to    finish all outstanding
transactions before archiving.    Note that this is only necessary if transactions are not
enabled.    If transactions are enabled, the store can be archived with incomplete
transactions pending, and reading it back drops the uncommitted changes.    See the code
snippet below:

/* Make a new storage object with a brand new IXStore */
- init
{

[super init];
storage = [[IXStore alloc] init];
return self;

}

/* Archiving myself */
- read:(NXTypedStream *)stream
{

[super read:stream];
storage = NXReadObject(stream);
return self;

}

- write:(NXTypedStream *)stream

{
[super write:stream];

/* A convenient place to finish outstanding
transactions. Not needed if transactions are
enabled.
*/

[storage commitTransaction];
NXWriteObject(stream, storage);
return self;

}

Please note that this program crasher has been fixed in Release 3.2, and an exception
error is raised instead. However, you still need to follow the above guideline to properly
archive an IXStore object.

QA901

Valid for 3.1, 3.2

